Biharmonic wave maps: local wellposedness in high regularity

We show the local wellposedness of biharmonic wave maps with initial data of sufficiently high Sobolev regularity and a blow-up criterion in the sup-norm of the gradient of the solutions. In contrast to the wave maps equation we use a vanishing viscosity argument and an appropriate parabolic regular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2020-05, Vol.33 (5), p.2270-2305
Hauptverfasser: Herr, Sebastian, Lamm, Tobias, Schmid, Tobias, Schnaubelt, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show the local wellposedness of biharmonic wave maps with initial data of sufficiently high Sobolev regularity and a blow-up criterion in the sup-norm of the gradient of the solutions. In contrast to the wave maps equation we use a vanishing viscosity argument and an appropriate parabolic regularization in order to obtain the existence result. The geometric nature of the equation is exploited to prove convergence of approximate solutions, uniqueness of the limit, and continuous dependence on initial data.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/ab73ce