From weakly interacting particles to a regularised Dean-Kawasaki model

The evolution of finitely many particles obeying Langevin dynamics is described by Dean-Kawasaki equations, a class of stochastic equations featuring a non-Lipschitz multiplicative noise in divergence form. We derive a regularised Dean-Kawasaki model based on second order Langevin dynamics by analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2020-02, Vol.33 (2), p.864-891
Hauptverfasser: Cornalba, Federico, Shardlow, Tony, Zimmer, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of finitely many particles obeying Langevin dynamics is described by Dean-Kawasaki equations, a class of stochastic equations featuring a non-Lipschitz multiplicative noise in divergence form. We derive a regularised Dean-Kawasaki model based on second order Langevin dynamics by analysing a system of particles interacting via a pairwise potential. Key tools of our analysis are the propagation of chaos and Simon's compactness criterion. The model we obtain is a small-noise stochastic perturbation of the undamped McKean-Vlasov equation. We also provide a high-probability result for existence and uniqueness for our model.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/ab5174