A representation of joint moments of CUE characteristic polynomials in terms of Painlevé functions
We establish a representation of the joint moments of the characteristic polynomial of a CUE random matrix and its derivative in terms of a solution of the -Painlevé V equation. The derivation involves the analysis of a formula for the joint moments in terms of a determinant of generalised Laguerre...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2019-10, Vol.32 (10), p.4033-4078 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a representation of the joint moments of the characteristic polynomial of a CUE random matrix and its derivative in terms of a solution of the -Painlevé V equation. The derivation involves the analysis of a formula for the joint moments in terms of a determinant of generalised Laguerre polynomials using the Riemann-Hilbert method. We use this connection with the -Painlevé V equation to derive explicit formulae for the joint moments and to show that in the large-matrix limit the joint moments are related to a solution of the -Painlevé III equation. Using the conformal block expansion of the -functions associated with the -Painlevé V and the -Painlevé III equations leads to general conjectures for the joint moments. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ab28c7 |