A representation of joint moments of CUE characteristic polynomials in terms of Painlevé functions

We establish a representation of the joint moments of the characteristic polynomial of a CUE random matrix and its derivative in terms of a solution of the -Painlevé V equation. The derivation involves the analysis of a formula for the joint moments in terms of a determinant of generalised Laguerre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2019-10, Vol.32 (10), p.4033-4078
Hauptverfasser: Basor, Estelle, Bleher, Pavel, Buckingham, Robert, Grava, Tamara, Its, Alexander, Its, Elizabeth, Keating, Jonathan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a representation of the joint moments of the characteristic polynomial of a CUE random matrix and its derivative in terms of a solution of the -Painlevé V equation. The derivation involves the analysis of a formula for the joint moments in terms of a determinant of generalised Laguerre polynomials using the Riemann-Hilbert method. We use this connection with the -Painlevé V equation to derive explicit formulae for the joint moments and to show that in the large-matrix limit the joint moments are related to a solution of the -Painlevé III equation. Using the conformal block expansion of the -functions associated with the -Painlevé V and the -Painlevé III equations leads to general conjectures for the joint moments.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/ab28c7