Kinetic layers and coupling conditions for nonlinear scalar equations on networks
We consider a kinetic relaxation model and an associated macroscopic scalar nonlinear hyperbolic equation on a network. Coupling conditions for the macroscopic equations are derived from the kinetic coupling conditions via an asymptotic analysis near the nodes of the network. This analysis leads to...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2018-07, Vol.31 (7), p.3512-3541 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a kinetic relaxation model and an associated macroscopic scalar nonlinear hyperbolic equation on a network. Coupling conditions for the macroscopic equations are derived from the kinetic coupling conditions via an asymptotic analysis near the nodes of the network. This analysis leads to the combination of kinetic half-space problems with Riemann problems at the junction. Detailed numerical comparisons between the different models show the agreement of the coupling conditions for the case of tripod networks. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/aabc91 |