The generic unfolding of a codimension-two connection to a two-fold singularity of planar Filippov systems

Generic bifurcation theory was classically well developed for smooth differential systems, establishing results for k-parameter families of planar vector fields. In the present study we focus on a qualitative analysis of 2-parameter families, , of planar Filippov systems assuming that Z0,0 presents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2018-05, Vol.31 (5), p.2083-2104
Hauptverfasser: Novaes, Douglas D, Teixeira, Marco A, Zeli, Iris O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generic bifurcation theory was classically well developed for smooth differential systems, establishing results for k-parameter families of planar vector fields. In the present study we focus on a qualitative analysis of 2-parameter families, , of planar Filippov systems assuming that Z0,0 presents a codimension-two minimal set. Such object, named elementary simple two-fold cycle, is characterized by a regular trajectory connecting a visible two-fold singularity to itself, for which the second derivative of the first return map is nonvanishing. We analyzed the codimension-two scenario through the exhibition of its bifurcation diagram.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/aaaaf7