The compatibility of methylammonium and formamidinium in mixed cation perovskite: the optoelectronic and stability properties
The methylammonium (MA) and formamidinium (FA) are the most commonly used organic cations in perovskite solar cells (PSCs), whereas the impact of size and polarity differences between these two on the photovoltaic performances has been rarely revealed. Herein, we systematically investigated the phas...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2021-02, Vol.32 (7), p.75406-075406 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The methylammonium (MA) and formamidinium (FA) are the most commonly used organic cations in perovskite solar cells (PSCs), whereas the impact of size and polarity differences between these two on the photovoltaic performances has been rarely revealed. Herein, we systematically investigated the phase distribution, optoelectronic and stability properties of FA-MA mixed perovskites. To identify the phase homogeneity, depth-dependent grazing-incidence wide-angle x-ray scattering measurements were employed, which demonstrates that the mixed cation perovskite possesses a FA-rich phase on the film surface and the bottom is comprised of MA-rich phase. Additionally, upon long-time illumination, a new PL peak is appeared at 778 nm, representing the generation of MA-rich phase induced by ion migration. It is worth noting that the phase splitting and inhomogeneous phase distribution would not bring any obvious detrimental effects to the photovoltaic performances and stability properties. Through judiciously tuning the cation proportion in pure-iodide perovskite, the additive-free PSCs achieve an efficiency as high as 20.7%. Furthermore, the PSCs with a broad range of FA/MA ratios show improved humidity/thermal/light stability despite the phase inhomogeneity. Therefore, the work shows that the MA and FA cations have a high compatibility in perovskite structure and the precise ratio control can further improve the performances. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/abc50c |