Dislocation sink annihilating threading dislocations in strain-relaxed Si 1-x Ge x layer

We proposed a dislocation sink technology for achieving Si Ge multi-bridge-channel field-effect-transistor beyond 5 nm transistor design-rule that essentially needs an almost crystalline-defect-free Si Ge channel. A generation of a dislocation sink via H implantations in a strain-relaxed Si Ge layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2020-03, Vol.31 (12), p.12LT01
Hauptverfasser: Choi, Sam-Jong, Kim, Il-Hwan, Park, Jun-Seong, Shim, Tae-Hun, Park, Jea-Gun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 12LT01
container_title Nanotechnology
container_volume 31
creator Choi, Sam-Jong
Kim, Il-Hwan
Park, Jun-Seong
Shim, Tae-Hun
Park, Jea-Gun
description We proposed a dislocation sink technology for achieving Si Ge multi-bridge-channel field-effect-transistor beyond 5 nm transistor design-rule that essentially needs an almost crystalline-defect-free Si Ge channel. A generation of a dislocation sink via H implantations in a strain-relaxed Si Ge layer grown on a Si substrate and a following annealing almost annihilate completely misfit and threading dislocations located near the interface between a relaxed Si Ge layer and a Si substrate. A real-time (continuous heating from room temperature to 600 °C) in situ high-resolution-transmission-electron-microscopy and inverse-fast-Fourier-transform image observation at 1.25 MV acceleration voltage obviously demonstrated the annihilation process between dislocation sinks and remaining misfit and threading dislocations during a thermal annealing, called the [Si or Ge  + V or V  → Si Ge ] annihilation process, where Si , Ge , V , and V are interstitial Si, interstitial Ge, Si vacancy, and Ge vacancy, respectively. In particular, the annihilation process efficiency greatly depended on the dose of H implantation and annealing temperature; i.e. a maximum annihilation process efficiency achieved at 5 × 10 atoms cm and 800 °C.
doi_str_mv 10.1088/1361-6528/ab58ab
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_ab58ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31739301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1111-2db97939a7d9086b2851fb1041974705dfbeba82d81d9bf4eb46d254d38fca733</originalsourceid><addsrcrecordid>eNpFkLFOwzAQhi0EoqWwMyG_gKkvdmJ7RIUWpEoMgMQWnWOHGtK0souUvj2JCuWWO_36vxs-Qq6B3wLXegqiAFbkmZ6izTXaEzI-RqdkzE2umJRajshFSp-cA-gMzslIgBJGcBiT9_uQmk2Fu7BpaQrtF8W2DavQ9En7QXer6NENl_vvJRr67i5iaFn0DXbe0ZdAgXV04WlHG9z7eEnOamySv_rdE_I2f3idPbLl8-JpdrdkFfTDMmeNMsKgcobrwmY6h9oCl2CUVDx3tfUWdeY0OGNr6a0sXJZLJ3RdoRJiQvjhbxU3KUVfl9sY1hj3JfBykFQORsrBSHmQ1CM3B2T7bdfeHYE_K-IH3OFjYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dislocation sink annihilating threading dislocations in strain-relaxed Si 1-x Ge x layer</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Choi, Sam-Jong ; Kim, Il-Hwan ; Park, Jun-Seong ; Shim, Tae-Hun ; Park, Jea-Gun</creator><creatorcontrib>Choi, Sam-Jong ; Kim, Il-Hwan ; Park, Jun-Seong ; Shim, Tae-Hun ; Park, Jea-Gun</creatorcontrib><description>We proposed a dislocation sink technology for achieving Si Ge multi-bridge-channel field-effect-transistor beyond 5 nm transistor design-rule that essentially needs an almost crystalline-defect-free Si Ge channel. A generation of a dislocation sink via H implantations in a strain-relaxed Si Ge layer grown on a Si substrate and a following annealing almost annihilate completely misfit and threading dislocations located near the interface between a relaxed Si Ge layer and a Si substrate. A real-time (continuous heating from room temperature to 600 °C) in situ high-resolution-transmission-electron-microscopy and inverse-fast-Fourier-transform image observation at 1.25 MV acceleration voltage obviously demonstrated the annihilation process between dislocation sinks and remaining misfit and threading dislocations during a thermal annealing, called the [Si or Ge  + V or V  → Si Ge ] annihilation process, where Si , Ge , V , and V are interstitial Si, interstitial Ge, Si vacancy, and Ge vacancy, respectively. In particular, the annihilation process efficiency greatly depended on the dose of H implantation and annealing temperature; i.e. a maximum annihilation process efficiency achieved at 5 × 10 atoms cm and 800 °C.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ab58ab</identifier><identifier>PMID: 31739301</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanotechnology, 2020-03, Vol.31 (12), p.12LT01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1111-2db97939a7d9086b2851fb1041974705dfbeba82d81d9bf4eb46d254d38fca733</citedby><cites>FETCH-LOGICAL-c1111-2db97939a7d9086b2851fb1041974705dfbeba82d81d9bf4eb46d254d38fca733</cites><orcidid>0000-0002-5831-2854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31739301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Sam-Jong</creatorcontrib><creatorcontrib>Kim, Il-Hwan</creatorcontrib><creatorcontrib>Park, Jun-Seong</creatorcontrib><creatorcontrib>Shim, Tae-Hun</creatorcontrib><creatorcontrib>Park, Jea-Gun</creatorcontrib><title>Dislocation sink annihilating threading dislocations in strain-relaxed Si 1-x Ge x layer</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>We proposed a dislocation sink technology for achieving Si Ge multi-bridge-channel field-effect-transistor beyond 5 nm transistor design-rule that essentially needs an almost crystalline-defect-free Si Ge channel. A generation of a dislocation sink via H implantations in a strain-relaxed Si Ge layer grown on a Si substrate and a following annealing almost annihilate completely misfit and threading dislocations located near the interface between a relaxed Si Ge layer and a Si substrate. A real-time (continuous heating from room temperature to 600 °C) in situ high-resolution-transmission-electron-microscopy and inverse-fast-Fourier-transform image observation at 1.25 MV acceleration voltage obviously demonstrated the annihilation process between dislocation sinks and remaining misfit and threading dislocations during a thermal annealing, called the [Si or Ge  + V or V  → Si Ge ] annihilation process, where Si , Ge , V , and V are interstitial Si, interstitial Ge, Si vacancy, and Ge vacancy, respectively. In particular, the annihilation process efficiency greatly depended on the dose of H implantation and annealing temperature; i.e. a maximum annihilation process efficiency achieved at 5 × 10 atoms cm and 800 °C.</description><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkLFOwzAQhi0EoqWwMyG_gKkvdmJ7RIUWpEoMgMQWnWOHGtK0souUvj2JCuWWO_36vxs-Qq6B3wLXegqiAFbkmZ6izTXaEzI-RqdkzE2umJRajshFSp-cA-gMzslIgBJGcBiT9_uQmk2Fu7BpaQrtF8W2DavQ9En7QXer6NENl_vvJRr67i5iaFn0DXbe0ZdAgXV04WlHG9z7eEnOamySv_rdE_I2f3idPbLl8-JpdrdkFfTDMmeNMsKgcobrwmY6h9oCl2CUVDx3tfUWdeY0OGNr6a0sXJZLJ3RdoRJiQvjhbxU3KUVfl9sY1hj3JfBykFQORsrBSHmQ1CM3B2T7bdfeHYE_K-IH3OFjYQ</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Choi, Sam-Jong</creator><creator>Kim, Il-Hwan</creator><creator>Park, Jun-Seong</creator><creator>Shim, Tae-Hun</creator><creator>Park, Jea-Gun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5831-2854</orcidid></search><sort><creationdate>20200320</creationdate><title>Dislocation sink annihilating threading dislocations in strain-relaxed Si 1-x Ge x layer</title><author>Choi, Sam-Jong ; Kim, Il-Hwan ; Park, Jun-Seong ; Shim, Tae-Hun ; Park, Jea-Gun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1111-2db97939a7d9086b2851fb1041974705dfbeba82d81d9bf4eb46d254d38fca733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Sam-Jong</creatorcontrib><creatorcontrib>Kim, Il-Hwan</creatorcontrib><creatorcontrib>Park, Jun-Seong</creatorcontrib><creatorcontrib>Shim, Tae-Hun</creatorcontrib><creatorcontrib>Park, Jea-Gun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Sam-Jong</au><au>Kim, Il-Hwan</au><au>Park, Jun-Seong</au><au>Shim, Tae-Hun</au><au>Park, Jea-Gun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation sink annihilating threading dislocations in strain-relaxed Si 1-x Ge x layer</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2020-03-20</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>12LT01</spage><pages>12LT01-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>We proposed a dislocation sink technology for achieving Si Ge multi-bridge-channel field-effect-transistor beyond 5 nm transistor design-rule that essentially needs an almost crystalline-defect-free Si Ge channel. A generation of a dislocation sink via H implantations in a strain-relaxed Si Ge layer grown on a Si substrate and a following annealing almost annihilate completely misfit and threading dislocations located near the interface between a relaxed Si Ge layer and a Si substrate. A real-time (continuous heating from room temperature to 600 °C) in situ high-resolution-transmission-electron-microscopy and inverse-fast-Fourier-transform image observation at 1.25 MV acceleration voltage obviously demonstrated the annihilation process between dislocation sinks and remaining misfit and threading dislocations during a thermal annealing, called the [Si or Ge  + V or V  → Si Ge ] annihilation process, where Si , Ge , V , and V are interstitial Si, interstitial Ge, Si vacancy, and Ge vacancy, respectively. In particular, the annihilation process efficiency greatly depended on the dose of H implantation and annealing temperature; i.e. a maximum annihilation process efficiency achieved at 5 × 10 atoms cm and 800 °C.</abstract><cop>England</cop><pmid>31739301</pmid><doi>10.1088/1361-6528/ab58ab</doi><orcidid>https://orcid.org/0000-0002-5831-2854</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2020-03, Vol.31 (12), p.12LT01
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_ab58ab
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Dislocation sink annihilating threading dislocations in strain-relaxed Si 1-x Ge x layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20sink%20annihilating%20threading%20dislocations%20in%20strain-relaxed%20Si%201-x%20Ge%20x%20layer&rft.jtitle=Nanotechnology&rft.au=Choi,%20Sam-Jong&rft.date=2020-03-20&rft.volume=31&rft.issue=12&rft.spage=12LT01&rft.pages=12LT01-&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/1361-6528/ab58ab&rft_dat=%3Cpubmed_cross%3E31739301%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31739301&rfr_iscdi=true