Recent advancements in manganite perovskites and spinel ferrite-based magnetic nanoparticles for biomedical theranostic applications
Recently, magnetic nanoparticles (MNPs) based on manganite perovskites (La1−xSrxMnO3 or LSMO) and/or spinel ferrites (i.e. SPFs with the formula MFe2O4; M=Co, Mg, Mn, Ni and Zn and mixed SPFs (e.g. Co-Zn, Mg-Mn, Mn-Zn and/or Ni-Zn)) have garnered great interest in magnetic hyperthermia therapy (MHT)...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2019-12, Vol.30 (50), p.502001-502001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, magnetic nanoparticles (MNPs) based on manganite perovskites (La1−xSrxMnO3 or LSMO) and/or spinel ferrites (i.e. SPFs with the formula MFe2O4; M=Co, Mg, Mn, Ni and Zn and mixed SPFs (e.g. Co-Zn, Mg-Mn, Mn-Zn and/or Ni-Zn)) have garnered great interest in magnetic hyperthermia therapy (MHT) as heat-inducing agents due to their tuneable magnetic properties including Curie temperature (Tc) to generate controllable therapeutic temperatures (i.e. 42 °C-45 °C)-under the application of an alternating magnetic field (AMF)-for the treatment of cancer. In addition, these nanoparticles are also utilized in magnetic resonance imaging (MRI) as contrast-enhancing agents. However, the employment of the LSMO/SPF-based MNPs in these MHT/MRI applications is majorly influenced by their inherent properties, which are mainly tuned by the synthesis factors. Therefore, in this review article, we have systematically discussed the significant chemical methods used to synthesize the LSMO/SPF-based MNPs and their corresponding intrinsic physicochemical properties (size/shape/crystallinity/dispersibility) and/or magnetic properties (including saturation magnetization (Ms)/Tc). Then, we have analyzed the usage of these MNPs for the effective imaging of cancerous tumors via MRI. Finally, we have reviewed in detail the heating capability (in terms of specific absorption rate) of the LSMO/SPF-based MNPs under calorimetric/biological conditions for efficient cancer treatment via MHT. Herein, we have mainly considered the significant parameters-such as size, surface coating (nature and amount), stoichiometry, concentration and the applied AMFs (including amplitude (H) and frequency (f))-that influence the heat induction ability of these MNPs. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab3f17 |