Laser micro-structured pressure sensor with modulated sensitivity for electronic skins

Micro-structured pressure sensors with broad pressure sensing range, high sensitivity and rapid response speeds are highly desired for epidermal electronic skin. The widely used methods to fabricate micro-structured pressure sensors are lithography and biomaterial-replicating, which are either compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2019-08, Vol.30 (32), p.325502-325502
Hauptverfasser: Gao, Yang, Lu, Cong, Guohui, Yu, Sha, Jin, Tan, Jianping, Xuan, Fuzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Micro-structured pressure sensors with broad pressure sensing range, high sensitivity and rapid response speeds are highly desired for epidermal electronic skin. The widely used methods to fabricate micro-structured pressure sensors are lithography and biomaterial-replicating, which are either complex in preparation procedure or uncontrollable in micro-structure morphology. In this work, laser micro-structured wearable pressure sensors with high-performance are developed for epidermal electronic skin. Laser micro-engineering, with scalability, high-efficiency, and controllability, is employed to prepare a series of micro-structures on elastomers for modulating and enhancing the sensitivity of the sensors. The device with micro-domes owns a sensitivity of −1.82 kPa−1, which is approximately 17 times better than the one based on long micro-ridges. Due to the reduced viscous properties of the elastomers by laser micro-engineering, the sensor based on micro-domes demonstrates rapid response/relaxation speeds of 0.036 and 0.052 s, respectively, and a detection limit of 0.001 kPa. Additionally, the device has a good durability (6,000 cycles) with a repeatability deviation of 1.44%, confirming its stability. Combined with near field communication technology, the sensor has been investigated as epidermal electronic skin for health monitoring.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ab1a86