Fault feature extraction method based on maximum envelope spectrum PFGI2 and empirical wavelet transform

Fast kurtogram (FK) is an efficient method for processing non-stationary signals, widely recognized by scholars as a rapid and effective approach for fault diagnosis. However, it has limitations in distinguishing between periodic pulse and random interference pulses due to the drawbacks in its frequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-08, Vol.35 (8), p.86124
Hauptverfasser: Tian, Yinchu, Tang, Guiji, Liu, Zichen, Tian, Tian, Xiaolong, Wang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 86124
container_title Measurement science & technology
container_volume 35
creator Tian, Yinchu
Tang, Guiji
Liu, Zichen
Tian, Tian
Xiaolong, Wang
description Fast kurtogram (FK) is an efficient method for processing non-stationary signals, widely recognized by scholars as a rapid and effective approach for fault diagnosis. However, it has limitations in distinguishing between periodic pulse and random interference pulses due to the drawbacks in its frequency band segmentation methods and the inherent shortcomings of the kurtosis index itself. To address this, this paper proposes a fault feature extraction method based on the maximum envelope spectrum power function-based Gini indices (PFGI2) and empirical wavelet transform. This method, inspired by the concept of FK, constructs a series of band-pass filters following the principles of empirical wavelet decomposition. It applies envelope spectrum analysis to a series of sub-bands and calculates the PFGI2 value for each, to identify the optimal sub-band. The effectiveness of the proposed method is validated through simulations of vibration signals and experimental data.
doi_str_mv 10.1088/1361-6501/ad4814
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad4814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad4814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-e5bceadff4413bdaaf07bc721205948711f44c6b6a0fea586aafd3f78d0d87693</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw5-gXCF3HieMcUUVLpUpwgHO0sddqUP5ku1DenkStOI12djQafYw9CngSoPVKSCUSlYNYoc20yK7Y4t-6Zgso8yKBVMpbdhfCFwAUUJYLdtjgsY3cEcajJ06n6NHEZuh5R_EwWF5jIMvnG09Nd-w49d_UDiPxMJKJfnLeN9tdyrG3nLqx8Y3Blv_glKLIp7o-uMF39-zGYRvo4aJL9rl5-Vi_Jvu37W79vE-MKFVMKK8NoXUuy4SsLaKDojZFKlLIy0wXQkwfo2qFMG3OtZoSVrpCW7C6UKVcMjj3Gj-E4MlVo2869L-VgGomVc1YqhlLdSYl_wB4xl7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fault feature extraction method based on maximum envelope spectrum PFGI2 and empirical wavelet transform</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Tian, Yinchu ; Tang, Guiji ; Liu, Zichen ; Tian, Tian ; Xiaolong, Wang</creator><creatorcontrib>Tian, Yinchu ; Tang, Guiji ; Liu, Zichen ; Tian, Tian ; Xiaolong, Wang</creatorcontrib><description>Fast kurtogram (FK) is an efficient method for processing non-stationary signals, widely recognized by scholars as a rapid and effective approach for fault diagnosis. However, it has limitations in distinguishing between periodic pulse and random interference pulses due to the drawbacks in its frequency band segmentation methods and the inherent shortcomings of the kurtosis index itself. To address this, this paper proposes a fault feature extraction method based on the maximum envelope spectrum power function-based Gini indices (PFGI2) and empirical wavelet transform. This method, inspired by the concept of FK, constructs a series of band-pass filters following the principles of empirical wavelet decomposition. It applies envelope spectrum analysis to a series of sub-bands and calculates the PFGI2 value for each, to identify the optimal sub-band. The effectiveness of the proposed method is validated through simulations of vibration signals and experimental data.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad4814</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-08, Vol.35 (8), p.86124</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-e5bceadff4413bdaaf07bc721205948711f44c6b6a0fea586aafd3f78d0d87693</cites><orcidid>0009-0009-1093-9744 ; 0000-0002-5082-0918 ; 0000-0003-3266-500X ; 0000-0002-5061-2529 ; 0000-0002-9929-0356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tian, Yinchu</creatorcontrib><creatorcontrib>Tang, Guiji</creatorcontrib><creatorcontrib>Liu, Zichen</creatorcontrib><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Xiaolong, Wang</creatorcontrib><title>Fault feature extraction method based on maximum envelope spectrum PFGI2 and empirical wavelet transform</title><title>Measurement science &amp; technology</title><description>Fast kurtogram (FK) is an efficient method for processing non-stationary signals, widely recognized by scholars as a rapid and effective approach for fault diagnosis. However, it has limitations in distinguishing between periodic pulse and random interference pulses due to the drawbacks in its frequency band segmentation methods and the inherent shortcomings of the kurtosis index itself. To address this, this paper proposes a fault feature extraction method based on the maximum envelope spectrum power function-based Gini indices (PFGI2) and empirical wavelet transform. This method, inspired by the concept of FK, constructs a series of band-pass filters following the principles of empirical wavelet decomposition. It applies envelope spectrum analysis to a series of sub-bands and calculates the PFGI2 value for each, to identify the optimal sub-band. The effectiveness of the proposed method is validated through simulations of vibration signals and experimental data.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqVw5-gXCF3HieMcUUVLpUpwgHO0sddqUP5ku1DenkStOI12djQafYw9CngSoPVKSCUSlYNYoc20yK7Y4t-6Zgso8yKBVMpbdhfCFwAUUJYLdtjgsY3cEcajJ06n6NHEZuh5R_EwWF5jIMvnG09Nd-w49d_UDiPxMJKJfnLeN9tdyrG3nLqx8Y3Blv_glKLIp7o-uMF39-zGYRvo4aJL9rl5-Vi_Jvu37W79vE-MKFVMKK8NoXUuy4SsLaKDojZFKlLIy0wXQkwfo2qFMG3OtZoSVrpCW7C6UKVcMjj3Gj-E4MlVo2869L-VgGomVc1YqhlLdSYl_wB4xl7I</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Tian, Yinchu</creator><creator>Tang, Guiji</creator><creator>Liu, Zichen</creator><creator>Tian, Tian</creator><creator>Xiaolong, Wang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-1093-9744</orcidid><orcidid>https://orcid.org/0000-0002-5082-0918</orcidid><orcidid>https://orcid.org/0000-0003-3266-500X</orcidid><orcidid>https://orcid.org/0000-0002-5061-2529</orcidid><orcidid>https://orcid.org/0000-0002-9929-0356</orcidid></search><sort><creationdate>20240801</creationdate><title>Fault feature extraction method based on maximum envelope spectrum PFGI2 and empirical wavelet transform</title><author>Tian, Yinchu ; Tang, Guiji ; Liu, Zichen ; Tian, Tian ; Xiaolong, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-e5bceadff4413bdaaf07bc721205948711f44c6b6a0fea586aafd3f78d0d87693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yinchu</creatorcontrib><creatorcontrib>Tang, Guiji</creatorcontrib><creatorcontrib>Liu, Zichen</creatorcontrib><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Xiaolong, Wang</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yinchu</au><au>Tang, Guiji</au><au>Liu, Zichen</au><au>Tian, Tian</au><au>Xiaolong, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault feature extraction method based on maximum envelope spectrum PFGI2 and empirical wavelet transform</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>86124</spage><pages>86124-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Fast kurtogram (FK) is an efficient method for processing non-stationary signals, widely recognized by scholars as a rapid and effective approach for fault diagnosis. However, it has limitations in distinguishing between periodic pulse and random interference pulses due to the drawbacks in its frequency band segmentation methods and the inherent shortcomings of the kurtosis index itself. To address this, this paper proposes a fault feature extraction method based on the maximum envelope spectrum power function-based Gini indices (PFGI2) and empirical wavelet transform. This method, inspired by the concept of FK, constructs a series of band-pass filters following the principles of empirical wavelet decomposition. It applies envelope spectrum analysis to a series of sub-bands and calculates the PFGI2 value for each, to identify the optimal sub-band. The effectiveness of the proposed method is validated through simulations of vibration signals and experimental data.</abstract><doi>10.1088/1361-6501/ad4814</doi><orcidid>https://orcid.org/0009-0009-1093-9744</orcidid><orcidid>https://orcid.org/0000-0002-5082-0918</orcidid><orcidid>https://orcid.org/0000-0003-3266-500X</orcidid><orcidid>https://orcid.org/0000-0002-5061-2529</orcidid><orcidid>https://orcid.org/0000-0002-9929-0356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-08, Vol.35 (8), p.86124
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad4814
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Fault feature extraction method based on maximum envelope spectrum PFGI2 and empirical wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20feature%20extraction%20method%20based%20on%20maximum%20envelope%20spectrum%20PFGI2%20and%20empirical%20wavelet%20transform&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Tian,%20Yinchu&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=86124&rft.pages=86124-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad4814&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad4814%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true