Fault feature extraction method based on maximum envelope spectrum PFGI2 and empirical wavelet transform

Fast kurtogram (FK) is an efficient method for processing non-stationary signals, widely recognized by scholars as a rapid and effective approach for fault diagnosis. However, it has limitations in distinguishing between periodic pulse and random interference pulses due to the drawbacks in its frequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-08, Vol.35 (8), p.86124
Hauptverfasser: Tian, Yinchu, Tang, Guiji, Liu, Zichen, Tian, Tian, Xiaolong, Wang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast kurtogram (FK) is an efficient method for processing non-stationary signals, widely recognized by scholars as a rapid and effective approach for fault diagnosis. However, it has limitations in distinguishing between periodic pulse and random interference pulses due to the drawbacks in its frequency band segmentation methods and the inherent shortcomings of the kurtosis index itself. To address this, this paper proposes a fault feature extraction method based on the maximum envelope spectrum power function-based Gini indices (PFGI2) and empirical wavelet transform. This method, inspired by the concept of FK, constructs a series of band-pass filters following the principles of empirical wavelet decomposition. It applies envelope spectrum analysis to a series of sub-bands and calculates the PFGI2 value for each, to identify the optimal sub-band. The effectiveness of the proposed method is validated through simulations of vibration signals and experimental data.
ISSN:0957-0233
1361-6501
DOI:10.1088/1361-6501/ad4814