Improved artificial gorilla troops optimizer with chaotic adaptive parameters - application to the parameter estimation problem of mixed additive and multiplicative random error models

For mixed additive and multiplicative random error models (MAM models), due to the complex correlation between the parameters and the model power array, derivative operations will be inevitable in the actual calculation. When the observation equation is in nonlinear form, the operations will be more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-02, Vol.35 (2), p.25203
Hauptverfasser: Wang, Leyang, Han, Shuhao, Pang, Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For mixed additive and multiplicative random error models (MAM models), due to the complex correlation between the parameters and the model power array, derivative operations will be inevitable in the actual calculation. When the observation equation is in nonlinear form, the operations will be more complicated. The swarm intelligence optimization algorithm (SIO) can effectively solve the derivative problem when estimating the nonlinear model parameters using conventional iterative algorithms. However, for different problems, the conventional SIO cannot effectively balance the ability of global and local behavior, resulting in the algorithm falling into prematureness and failing to output effective parameter information. To address the above problems, the improved artificial gorilla troops optimizer (CAGTO) algorithm with chaotic adaptive behavior is proposed. To address the problem that the population generated by the algorithm using pseudo-random numbers in the initialization population phase has poor traversability in the feasible domain, the chaotic sequence is applied to initialize the population instead of pseudo-random number generation to ensure that the population can traverse the feasible domain as much as possible and improve the global search capability of the algorithm. Adaptive parameters that vary linearly and nonlinearly with the algorithm process are constructed to balance the global search and local search ability, while accelerating the convergence speed. Two CAGTO algorithms with different parameter settings are constructed for different problems, and the experimental results show that both CAGTO algorithms can effectively solve the parameter estimation problem of MAM models with different nonlinear forms of observation equations compared with several other comparative algorithms.
ISSN:0957-0233
1361-6501
DOI:10.1088/1361-6501/ad093b