Integrated navigation model based on TDCP constrained algorithm

The velocity information estimated by the global navigation satellite system (GNSS) receiver is an important element for the dynamic alignment of the inertial navigation system, and it is of great significance to analyze it deeply and meticulously. A variety of GNSS velocity measurement models show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2023-12, Vol.34 (12), p.125137
Hauptverfasser: Liu, Yanlong, Li, Zengke, Ning, Yipeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The velocity information estimated by the global navigation satellite system (GNSS) receiver is an important element for the dynamic alignment of the inertial navigation system, and it is of great significance to analyze it deeply and meticulously. A variety of GNSS velocity measurement models show different characteristics in a changeable environment, and this status quo is bound to break the monotonous situation in which the Doppler model is widely used. In this regard, this paper applies different GNSS velocity measurement models to strap-down interial navigation system (SINS) dynamic alignment and continuous observation. In addition, aiming at the shortcomings of the traditional time-differenced carrier phase (TDCP) algorithm, an optimization method is deduced from the formula level, and two effective constraint algorithms are given. Then, according to the vehicle test results, comprehensively compare the integrated navigation performance of various speed measurement models, and analyze the improvement effect of the proposed TDCP algorithm. This paper provides a summary for the comprehensive study of GNSS velocity measurement model and the application of optimized carrier phase to integrated navigation, which has certain practical value.
ISSN:0957-0233
1361-6501
DOI:10.1088/1361-6501/acf77c