Micro-machining of in-fibre 45° mirror optical fibre cantilever for dual-axis acceleration measurement
Focused ion beam (FIB) machining has been demonstrated to be capable of fabricating nano- and micro-scale structures. In this paper we demonstrate techniques to design and fabricate 45° micro-mirrors into the end of multi-core fibres using FIB processing. The mirrors are fabricated by a two-step pro...
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2023-04, Vol.34 (4), p.45105 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Focused ion beam (FIB) machining has been demonstrated to be capable of fabricating nano- and micro-scale structures. In this paper we demonstrate techniques to design and fabricate 45° micro-mirrors into the end of multi-core fibres using FIB processing. The mirrors are fabricated by a two-step process: a scanning process which is used to make a rough cut followed by a polishing process to create an optical surface finish mirror. The machined 45° mirrors can be accurately aligned with optical fibre cores, which avoids issues associated with the alignment of external turning mirror components. Proof-of-concept demonstration shows that the fabricated structure is capable of measuring two-axis acceleration interferometrically with a linear response from 0.2 to 4 g and an rms. error of 0.03 g. Acceleration measurements of frequency response up to 700 Hz and cross-sensitivity of ∼4.3% are demonstrated. |
---|---|
ISSN: | 0957-0233 1361-6501 |
DOI: | 10.1088/1361-6501/acad1b |