The effect of crystallographic orientation of α -Al 2 O 3 on the wetting behavior and adhesion characteristics of aluminum droplets
To solve the problem of adhesion of aluminum fluid to the inner wall of the vacuum ladle in the aluminum electrolysis industry, molecular dynamics simulation is performed to research the wetting behavior of Al droplets on the surfaces of the -Al O substrates C (0001), M (11-00), and R (11-02) at 107...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2024-05, Vol.36 (19), p.195001 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To solve the problem of adhesion of aluminum fluid to the inner wall of the vacuum ladle in the aluminum electrolysis industry, molecular dynamics simulation is performed to research the wetting behavior of Al droplets on the surfaces of the
-Al
O
substrates C (0001), M (11-00), and R (11-02) at 1073 K. Meanwhile, the adhesion characteristics of the Al droplet are evaluated by the potential of the mean force (PMF) for the separation of the Al droplets from different surfaces of the
-Al
O
substrate. The results show that the wetting behavior of Al droplets on the
-Al
O
substrate is influenced by the different crystallographic orientations. The diffusion of Al droplets in the
plane of the substrate exhibits isotropic. The PMF and the interfacial potential energy reveal that the magnitude of the adhesion work in the solid-liquid separation of Al droplets from
-Al
O
substrates follows the order C (0001) > R (11-02) > M (11-00). These findings characterize the wetting properties and adhesion behavior of Al droplets on an atomic scale and provide a theoretical basis for the selection of materials for the inner wall of the vacuum ladle. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/1361-648X/ad24bc |