Numerical investigation of localization in two-dimensional quasiperiodic mosaic lattice

A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wang 2020 196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2023-04, Vol.35 (13), p.135301
Hauptverfasser: Wang, Hui-Hui, Wang, Si-Si, Yu, Yan, Zhang, Biao, Dai, Yi-Ming, Chen, Hao-Can, Zhang, Yi-Cai, Zhang, Yan-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wang 2020 196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properties: the phase diagram from the fractal dimension of the wavefunction, the statistical and scaling properties of the conductance. Compared with disordered systems, our model shares many common features but also exhibits some different characteristics in the same dimensionality and the same universality class. For example, the sharp peak atg∼0of the critical distribution and the large limit of the universal scaling function resemble those behaviors of three-dimensional disordered systems.
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/acb67c