The influence of surface potential on the optical switching of spiropyran self assembled monolayers

Surfaces whose macroscopic properties can be switched by light are potentially useful in a wide variety of applications. One such promising application is electrochemical sensors that can be gated by optically switching the electrode on or off. One way to make such a switchable electrode is by depos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2017-10, Vol.29 (41), p.414002-414002
Hauptverfasser: Garling, Tobias, Tong, Yujin, Darwish, Tamim A, Wolf, Martin, Campen, R Kramer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surfaces whose macroscopic properties can be switched by light are potentially useful in a wide variety of applications. One such promising application is electrochemical sensors that can be gated by optically switching the electrode on or off. One way to make such a switchable electrode is by depositing a self-assembled monolayer (SAM) of bistable, optically switchable molecules onto an electrode surface. Quantitative application of any such sensor requires understanding how changes in interfacial field affect the composition of photostationary states, i.e. how does electrode potential affect the extent to which the electrode is on or off when irradiated, and the structure of the SAM. Here we address these questions for a SAM of a 6-nitro-substituted spiro[2H-1-benzopyran-2,2'-indoline] covalently attached through a dithiolane linker to an Au electrode immersed in a 0.1 M solution of Tetramethylammonium hexafluorophosphate in Acetonitrile using interface-specific vibrational spectroscopy. We find that in the absence of irradiation, when the SAM is dominated by the closed spiropyran form, variations in potential of 1 V have little effect on spiropyran relative stability. In contrast, under UV irradiation small changes in potential can have dramatic effects: changes in potential of 0.2 V can completely destabilize the open merocyanine form of the SAM relative to the spiropyran and dramatically change the chromophore orientation. Quantitatively accounting for these effects is necessary to employ this, or any other optically switchable bistable chromophore, in electrochemical applications.
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/aa8118