Photoreflectance studies of temperature and hydrostatic pressure dependencies of direct optical transitions in BGaAs alloys grown on GaP
BGaAs layers with boron concentrations of 4.1%, 7.4%, and 12.1% are grown by molecular beam epitaxy on a GaP substrate and studied by optical absorption and photoreflectance (PR) spectroscopy with both temperature and hydrostatic pressure dependence. The direct optical transitions from the bands com...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2022-01, Vol.55 (1), p.15107 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BGaAs layers with boron concentrations of 4.1%, 7.4%, and 12.1% are grown by molecular beam epitaxy on a GaP substrate and studied by optical absorption and photoreflectance (PR) spectroscopy with both temperature and hydrostatic pressure dependence. The direct optical transitions from the bands composing the valence band—namely heavy-hole, light-hole, and spin–orbit split-off—to the conduction band are clearly observed in the PR spectra. For the abovementioned optical transitions, their temperature dependencies are obtained in the range from 20 K to 300 K, and analyzed by Varshni and Bose–Einstein relations. Furthermore, the BGaAs alloys are also studied with hydrostatic pressure up to ∼18 kbar, revealing pressure coefficients of direct optical transitions. The obtained results are discussed within the framework of the band anticrossing model and chemical trends. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/ac2643 |