Directed transport of suspended ferromagnetic nanoparticles under both gradient and uniform magnetic fields

The suspended ferromagnetic particles subjected to the gradient and uniform magnetic fields experience both the translational force generated by the field gradient and the rotational torque generated by the fields strengths. Although the uniform field does not contribute to the force, it nevertheles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2020-09, Vol.53 (40), p.405001
Hauptverfasser: Denisov, S I, Lyutyy, T V, Pavlyuk, M O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The suspended ferromagnetic particles subjected to the gradient and uniform magnetic fields experience both the translational force generated by the field gradient and the rotational torque generated by the fields strengths. Although the uniform field does not contribute to the force, it nevertheless influences the translational motion of these particles. This occurs because the translational force depends on the direction of the particle magnetization, which in turn depends on the fields strengths. To study this influence, a minimal set of equations describing the coupled translational and rotational motions of nanosized ferromagnetic particles is introduced and solved in the low Reynolds number approximation. Trajectory analysis reveals that, depending on the initial positions of nanoparticles, there exist four regimes of their directed transport. The intervals of initial positions that correspond to different dynamical regimes are determined, their dependence on the uniform magnetic field is established, and strong impact of this field on the directed transport is demonstrated. The ability and efficiency of the uniform magnetic field to control the separation of suspended ferromagnetic nanoparticles is also discussed.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/ab97da