Characterization of the arc in crossflow using a two-temperature nonequilibrium plasma flow model

Diverse industrial applications such as circuit breakers and wire arc spraying involve the interaction between an electric arc and a stream of gas impinging perpendicular to it, a configuration commonly referred to as the arc in crossflow. The arc in crossflow is simulated using a three-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2019-01, Vol.52 (1), p.15205
Hauptverfasser: Bhigamudre, V G, Trelles, J P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diverse industrial applications such as circuit breakers and wire arc spraying involve the interaction between an electric arc and a stream of gas impinging perpendicular to it, a configuration commonly referred to as the arc in crossflow. The arc in crossflow is simulated using a three-dimensional time-dependent two-temperature (heavy-species and electrons) plasma flow model to better capture plasma-gas interactions and deviations from Local Thermodynamic Equilibrium (LTE). The coupled fluid-electromagnetic flow model is solved in a monolithic manner using variational multiscale finite element method. Simulation results are validated with experimental findings and contrasted against results obtained with a LTE model. Results from the two-temperature model corroborate experimental observations while providing quantification of the deviation between heavy-species and electron temperatures. The model is used to characterize the arc in crossflow as a function of the Reynolds and Enthalpy dimensionless numbers, which encapsulate the inter-dependence among the main parameters total current, inflow velocity, and inter-electrode spacing. The characterization revealed the behavior of arc shape, voltage drop, arc power, the degree of nonequilibrium, as well as the characteristic plasma front thickness, with varying controlling parameters.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/aae643