Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2018-02, Vol.51 (5), p.55601
Hauptverfasser: Olbinado, Margie P, Cantelli, Valentina, Mathon, Olivier, Pascarelli, Sakura, Grenzer, Joerg, Pelka, Alexander, Roedel, Melanie, Prencipe, Irene, Garcia, Alejandro Laso, Helbig, Uwe, Kraus, Dominik, Schramm, Ulrich, Cowan, Tom, Scheel, Mario, Pradel, Pierre, De Resseguier, Thibaut, Rack, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/aaa2f2