Wet-etched phononic crystal waveguiding on GaAs
A wet-etched phononic crystal waveguide in GaAs with approximately two micron deep inclusions is studied both numerically and experimentally for controlled surface acoustic wave propagation. Numerically, the phononic crystal was modelled using the finite element method (FEM) with COMSOL Multiphysics...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2018-01, Vol.51 (4), p.44001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A wet-etched phononic crystal waveguide in GaAs with approximately two micron deep inclusions is studied both numerically and experimentally for controlled surface acoustic wave propagation. Numerically, the phononic crystal was modelled using the finite element method (FEM) with COMSOL Multiphysics, and the surface displacement of the acoustic waves was measured using optical interferometry. The computed filter response of the phononic crystal confirmed that the phononic crystal was an effective stop band filter in the interval of 400 MHz and 450 MHz. An L1 linear defect waveguide with a stepped funnel entrance design is shown to perform well at a surface acoustic wave frequency of 410.344 MHz and in agreement to simulated results. The phononic crystal waveguide system shows promise for use in acoustic control of GaAs-based quantum nanostructures. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/aaa0e4 |