Production of photonic nanojets by using pupil-masked 3D dielectric cuboid
Photonic nanojets can be created via plane wave irradiation of multi-shaped mesoscale dielectric particles, and a waist of full-width at half-maximum (FWHM) smaller than the diffraction limit can be achieved in this process. In this paper, photonic nanojet produced by a pupil-masked 3D dielectric cu...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2017-05, Vol.50 (17), p.175102 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photonic nanojets can be created via plane wave irradiation of multi-shaped mesoscale dielectric particles, and a waist of full-width at half-maximum (FWHM) smaller than the diffraction limit can be achieved in this process. In this paper, photonic nanojet produced by a pupil-masked 3D dielectric cuboid lens is numerically investigated under the irradiation of 532 nm wavelength plane wave. It is found that a pupil-masked cuboid lens is not only able to produce photonic nanojets with shorter FWHMs, but also increase its maximal intensity at certain masking ratios on the receiving surface. This phenomenon is different from the result of the spherical-lens reported in previous publications, and is attributed to the convergence of power flow and near-field numerical aperture (NA) increase after analysis of simulated power flow diagrams. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/aa61cb |