Glassy disorder-induced effects in noisy dynamics of Bose–Hubbard and Fermi–Hubbard systems
We address the effects of quenched disorder averaging in the time-evolution of systems of ultracold atoms in optical lattices in the presence of noise, imposed by an environment. For bosonic systems governed by the Bose–Hubbard Hamiltonian, we quantify the response of disorder in Hamiltonian paramet...
Gespeichert in:
Veröffentlicht in: | Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2022-10, Vol.55 (20), p.205502 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address the effects of quenched disorder averaging in the time-evolution of systems of ultracold atoms in optical lattices in the presence of noise, imposed by an environment. For bosonic systems governed by the Bose–Hubbard Hamiltonian, we quantify the response of disorder in Hamiltonian parameters in terms of physical observables, including bipartite entanglement in the ground state, and report the existence of disorder-induced enhancement in weakly interacting cases. For systems of two-species fermions described by the Fermi–Hubbard Hamiltonian, we find similar results. In both cases, our dynamical calculations show no appreciable change in the effects of disorder from that of the initial state of the evolution. We explain our findings in terms of the statistics of the disorder in the parameters and the behaviour of the observables with the parameters. |
---|---|
ISSN: | 0953-4075 1361-6455 |
DOI: | 10.1088/1361-6455/ac8e3b |