Broadband strong photon correlations of frequency-resolved single-atom resonance fluorescence generated by two equal-frequency laser fields with different amplitudes

Frequency-resolved photon statistics of resonance fluorescence generated from a two-level system driven by a strong laser field and a weak laser field with equal frequencies are studied. The frequency resolution of fluorescent radiation is described by quantum filtering dynamics, which is simulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2022-04, Vol.55 (8), p.85402
Hauptverfasser: Liu, Su-jing, Peng, Ze-an, Geng, Xu-xing, Zhao, Teng, Wu, Shao-ping, Li, Gao-xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Frequency-resolved photon statistics of resonance fluorescence generated from a two-level system driven by a strong laser field and a weak laser field with equal frequencies are studied. The frequency resolution of fluorescent radiation is described by quantum filtering dynamics, which is simulated theoretically by two single-mode quantum optical cavities with tunable frequencies to scan the incident fluorescent radiation. By calculating the two-photon intensity–intensity correlation functions in terms of the cavity modes, we demonstrate that two-color strong correlations of resonance fluorescence can be generated not only between the opposite sidebands, but also between the central band and one of the sidebands: although both sidebands are broadened due to the perturbation of the weak laser field on the strong-field dressed atom. We emphasize that these properties are in contrast to the conventional case of the standard single-atom Mollow triplet. Moreover, if the resonance frequencies of the two filtering cavities are tuned appropriately, broadband two-color strong correlations are predicted, and the physical origin is revealed from the perspective of quantum interference of photon emission dynamics. This can be considered as a feasible scheme for the design of broadband non-classical light sources, and may be beneficial to the quantum precise detection of atomic and molecular dynamics via quantum optical spectroscopy.
ISSN:0953-4075
1361-6455
DOI:10.1088/1361-6455/ac5b2f