Bogoliubov theory of a Bose–Einstein condensate of rigid rotor molecules
We consider a BEC of rigid rotor molecules confined to quasi-2D through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole–dipole interactions. We present a description of the ground state and low-energy excitat...
Gespeichert in:
Veröffentlicht in: | Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2021-10, Vol.54 (20), p.205302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 205302 |
container_title | Journal of physics. B, Atomic, molecular, and optical physics |
container_volume | 54 |
creator | Smith, Joseph C Rittenhouse, Seth T Wilson, Ryan M Peden, Brandon M |
description | We consider a BEC of rigid rotor molecules confined to quasi-2D through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole–dipole interactions. We present a description of the ground state and low-energy excitations of the system including an analysis of the mean-field energy, polarization, and stability. Under large electric fields the gas becomes fully polarized and we reproduce a well known density-wave instability which arises in polar BECs. Under smaller applied electric fields the gas develops an in-plane polarization leading to the emergence of a new global instability as the molecules ‘tilt’. The character of these instabilities is clarified by means of momentum-space density–density structure factors. A peak at zero momentum in the spin–spin structure factor for the in-plane component of the polarization indicates that the tilt instability is a global phonon-like instability. |
doi_str_mv | 10.1088/1361-6455/ac34dd |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6455_ac34dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>bac34dd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-a6b8e619ee6780e94befb83470aac9f9535469d2cd9c556d92c33de48b7c198c3</originalsourceid><addsrcrecordid>eNp1UEtOwzAUtBBIlMKepQ9AqB1_Yi9pVX6qxAbWlmO_FFdpXNkpUnfcgRtyEhIVsWP1pHkzo5lB6JqSW0qUmlEmaSG5EDPrGPf-BE3-oFM0IVqwgpNKnKOLnDeEUKpKMkHP87iObdjX8QP37xDTAccGWzyPGb4_v5ahyz2EDrvYeeiy7WH8p7AOHqfYx4S3sQW3byFforPGthmufu8Uvd0vXxePxerl4WlxtypcyVhfWFkrkFQDyEoR0LyGplaMV8Rap5shp-BS-9J57YSQXpeOMQ9c1ZWjWjk2ReTo61LMOUFjdilsbToYSsy4hRmLm7G4OW4xSG6OkhB3ZhP3qRsC_k__AfSUYlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bogoliubov theory of a Bose–Einstein condensate of rigid rotor molecules</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Smith, Joseph C ; Rittenhouse, Seth T ; Wilson, Ryan M ; Peden, Brandon M</creator><creatorcontrib>Smith, Joseph C ; Rittenhouse, Seth T ; Wilson, Ryan M ; Peden, Brandon M</creatorcontrib><description>We consider a BEC of rigid rotor molecules confined to quasi-2D through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole–dipole interactions. We present a description of the ground state and low-energy excitations of the system including an analysis of the mean-field energy, polarization, and stability. Under large electric fields the gas becomes fully polarized and we reproduce a well known density-wave instability which arises in polar BECs. Under smaller applied electric fields the gas develops an in-plane polarization leading to the emergence of a new global instability as the molecules ‘tilt’. The character of these instabilities is clarified by means of momentum-space density–density structure factors. A peak at zero momentum in the spin–spin structure factor for the in-plane component of the polarization indicates that the tilt instability is a global phonon-like instability.</description><identifier>ISSN: 0953-4075</identifier><identifier>EISSN: 1361-6455</identifier><identifier>DOI: 10.1088/1361-6455/ac34dd</identifier><identifier>CODEN: JPAPEH</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Bogoliubov theory ; Bose–Einstein condensate ; polar molecules ; ultracold gas</subject><ispartof>Journal of physics. B, Atomic, molecular, and optical physics, 2021-10, Vol.54 (20), p.205302</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-a6b8e619ee6780e94befb83470aac9f9535469d2cd9c556d92c33de48b7c198c3</cites><orcidid>0000-0002-1687-7320 ; 0000-0003-2764-0983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6455/ac34dd/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Smith, Joseph C</creatorcontrib><creatorcontrib>Rittenhouse, Seth T</creatorcontrib><creatorcontrib>Wilson, Ryan M</creatorcontrib><creatorcontrib>Peden, Brandon M</creatorcontrib><title>Bogoliubov theory of a Bose–Einstein condensate of rigid rotor molecules</title><title>Journal of physics. B, Atomic, molecular, and optical physics</title><addtitle>JPhysB</addtitle><addtitle>J. Phys. B: At. Mol. Opt. Phys</addtitle><description>We consider a BEC of rigid rotor molecules confined to quasi-2D through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole–dipole interactions. We present a description of the ground state and low-energy excitations of the system including an analysis of the mean-field energy, polarization, and stability. Under large electric fields the gas becomes fully polarized and we reproduce a well known density-wave instability which arises in polar BECs. Under smaller applied electric fields the gas develops an in-plane polarization leading to the emergence of a new global instability as the molecules ‘tilt’. The character of these instabilities is clarified by means of momentum-space density–density structure factors. A peak at zero momentum in the spin–spin structure factor for the in-plane component of the polarization indicates that the tilt instability is a global phonon-like instability.</description><subject>Bogoliubov theory</subject><subject>Bose–Einstein condensate</subject><subject>polar molecules</subject><subject>ultracold gas</subject><issn>0953-4075</issn><issn>1361-6455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtOwzAUtBBIlMKepQ9AqB1_Yi9pVX6qxAbWlmO_FFdpXNkpUnfcgRtyEhIVsWP1pHkzo5lB6JqSW0qUmlEmaSG5EDPrGPf-BE3-oFM0IVqwgpNKnKOLnDeEUKpKMkHP87iObdjX8QP37xDTAccGWzyPGb4_v5ahyz2EDrvYeeiy7WH8p7AOHqfYx4S3sQW3byFforPGthmufu8Uvd0vXxePxerl4WlxtypcyVhfWFkrkFQDyEoR0LyGplaMV8Rap5shp-BS-9J57YSQXpeOMQ9c1ZWjWjk2ReTo61LMOUFjdilsbToYSsy4hRmLm7G4OW4xSG6OkhB3ZhP3qRsC_k__AfSUYlA</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Smith, Joseph C</creator><creator>Rittenhouse, Seth T</creator><creator>Wilson, Ryan M</creator><creator>Peden, Brandon M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1687-7320</orcidid><orcidid>https://orcid.org/0000-0003-2764-0983</orcidid></search><sort><creationdate>20211020</creationdate><title>Bogoliubov theory of a Bose–Einstein condensate of rigid rotor molecules</title><author>Smith, Joseph C ; Rittenhouse, Seth T ; Wilson, Ryan M ; Peden, Brandon M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-a6b8e619ee6780e94befb83470aac9f9535469d2cd9c556d92c33de48b7c198c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bogoliubov theory</topic><topic>Bose–Einstein condensate</topic><topic>polar molecules</topic><topic>ultracold gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Joseph C</creatorcontrib><creatorcontrib>Rittenhouse, Seth T</creatorcontrib><creatorcontrib>Wilson, Ryan M</creatorcontrib><creatorcontrib>Peden, Brandon M</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Joseph C</au><au>Rittenhouse, Seth T</au><au>Wilson, Ryan M</au><au>Peden, Brandon M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bogoliubov theory of a Bose–Einstein condensate of rigid rotor molecules</atitle><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle><stitle>JPhysB</stitle><addtitle>J. Phys. B: At. Mol. Opt. Phys</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>54</volume><issue>20</issue><spage>205302</spage><pages>205302-</pages><issn>0953-4075</issn><eissn>1361-6455</eissn><coden>JPAPEH</coden><abstract>We consider a BEC of rigid rotor molecules confined to quasi-2D through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole–dipole interactions. We present a description of the ground state and low-energy excitations of the system including an analysis of the mean-field energy, polarization, and stability. Under large electric fields the gas becomes fully polarized and we reproduce a well known density-wave instability which arises in polar BECs. Under smaller applied electric fields the gas develops an in-plane polarization leading to the emergence of a new global instability as the molecules ‘tilt’. The character of these instabilities is clarified by means of momentum-space density–density structure factors. A peak at zero momentum in the spin–spin structure factor for the in-plane component of the polarization indicates that the tilt instability is a global phonon-like instability.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6455/ac34dd</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1687-7320</orcidid><orcidid>https://orcid.org/0000-0003-2764-0983</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-4075 |
ispartof | Journal of physics. B, Atomic, molecular, and optical physics, 2021-10, Vol.54 (20), p.205302 |
issn | 0953-4075 1361-6455 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6455_ac34dd |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Bogoliubov theory Bose–Einstein condensate polar molecules ultracold gas |
title | Bogoliubov theory of a Bose–Einstein condensate of rigid rotor molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bogoliubov%20theory%20of%20a%20Bose%E2%80%93Einstein%20condensate%20of%20rigid%20rotor%20molecules&rft.jtitle=Journal%20of%20physics.%20B,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Smith,%20Joseph%20C&rft.date=2021-10-20&rft.volume=54&rft.issue=20&rft.spage=205302&rft.pages=205302-&rft.issn=0953-4075&rft.eissn=1361-6455&rft.coden=JPAPEH&rft_id=info:doi/10.1088/1361-6455/ac34dd&rft_dat=%3Ciop_cross%3Ebac34dd%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |