Bogoliubov theory of a Bose–Einstein condensate of rigid rotor molecules

We consider a BEC of rigid rotor molecules confined to quasi-2D through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole–dipole interactions. We present a description of the ground state and low-energy excitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2021-10, Vol.54 (20), p.205302
Hauptverfasser: Smith, Joseph C, Rittenhouse, Seth T, Wilson, Ryan M, Peden, Brandon M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a BEC of rigid rotor molecules confined to quasi-2D through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole–dipole interactions. We present a description of the ground state and low-energy excitations of the system including an analysis of the mean-field energy, polarization, and stability. Under large electric fields the gas becomes fully polarized and we reproduce a well known density-wave instability which arises in polar BECs. Under smaller applied electric fields the gas develops an in-plane polarization leading to the emergence of a new global instability as the molecules ‘tilt’. The character of these instabilities is clarified by means of momentum-space density–density structure factors. A peak at zero momentum in the spin–spin structure factor for the in-plane component of the polarization indicates that the tilt instability is a global phonon-like instability.
ISSN:0953-4075
1361-6455
DOI:10.1088/1361-6455/ac34dd