An absolute energy characterisation of scandium Kβ to 2 parts per million

We present an absolute energy measurement of the Kβ1,3 (KM2,3) emission spectrum of scandium (Z = 21) accurate to 2.1 parts per million (ppm). The previous experimental uncertainty was estimated as 105 ppm, or 0.47 eV, therefore we improve the accuracy of this measurement by a factor of 50 for use i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2020-10, Vol.53 (20), p.205004
Hauptverfasser: Dean, J W, Chantler, C T, Smale, L F, Melia, H A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an absolute energy measurement of the Kβ1,3 (KM2,3) emission spectrum of scandium (Z = 21) accurate to 2.1 parts per million (ppm). The previous experimental uncertainty was estimated as 105 ppm, or 0.47 eV, therefore we improve the accuracy of this measurement by a factor of 50 for use in any x-ray standards. There is a long-standing discrepancy between the most recent experimental and theoretical values. This work reports a Sc Kβ peak energy of 4460.845 eV with estimated standard error uncertainty of 0.0092 eV. The satellite component centroids, line-widths, and relative intensities are determined as a sum of five Voigt functions. The same analysis and experimental method shown here can be applied to advanced experiments in quantum electrodynamics, astrophysics and particle physics on soft x-ray spectra. This value has reconciled some of the previous discrepancy. However, the theoretical value is still discrepant from the new experimental measurement by 1.745 eV with a much tighter constraint on the experimental uncertainty. This strongly strengthens the need for new theoretical calculations and experimental measurements.
ISSN:0953-4075
1361-6455
DOI:10.1088/1361-6455/abb1ff