Elastic-plastic properties of mesoscale electrodeposited LIGA nickel alloy films: microscopy and mechanics

The elastic-plastic properties of mesoscale electrodeposited LIGA Ni alloy specimens are investigated as a function of specimen size, strain rate, and material composition. Two material compositions are studied: a high-strength fine-grained Ni-Fe alloy and a high-ductility coarse-grained Ni-Co alloy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micromechanics and microengineering 2021-01, Vol.31 (1), p.15002
Hauptverfasser: Liew, Li-Anne, Read, David T, Martin, May L, DelRio, Frank W, Bradley, Peter E, Barbosa, Nicholas, Christenson, Todd R, Geaney, John T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The elastic-plastic properties of mesoscale electrodeposited LIGA Ni alloy specimens are investigated as a function of specimen size, strain rate, and material composition. Two material compositions are studied: a high-strength fine-grained Ni-Fe alloy and a high-ductility coarse-grained Ni-Co alloy. The specimens have thicknesses of approximately 200 μm and gauge widths ranging from 75 μm to 700 μm. Tensile tests are conducted at strain rates of 0.001/s and 1/s using tabletop loading apparatuses and digital image correlation (DIC) for strain measurement. For each test condition, the apparent Young's modulus, yield strength, ultimate tensile strength, and strain hardening exponent and strength coefficient are extracted from the tensile tests. The true strains to failure are also assessed from fractography. Size, rate, and composition effects are discussed. For most properties, the statistical scatter represented by the standard deviation exceeds the measurement uncertainty; the notable exceptions to these observations are the apparent Young's modulus and yield strength, where large measurement uncertainties are ascribed to common experimental factors and material microplasticity.
ISSN:0960-1317
1361-6439
DOI:10.1088/1361-6439/abc0ff