Optimal regularized hypothesis testing in statistical inverse problems

Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of inverse problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2024-01, Vol.40 (1), p.15013
Hauptverfasser: Kretschmann, Remo, Wachsmuth, Daniel, Werner, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of inverse problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we propose a regularized approach to hypothesis testing in inverse problems in the sense that the underlying estimators (or test statistics) are allowed to be biased. Under mild source-condition type assumptions, we derive a family of tests with prescribed level α and subsequently analyze how to choose the test with maximal power out of this family. As one major result we prove that regularized testing is always at least as good as (classical) unregularized testing. Furthermore, using tools from convex optimization, we provide an adaptive test by maximizing the power functional, which then outperforms previous unregularized tests in numerical simulations by several orders of magnitude.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ad1132