Analysis of sampling methods for imaging a periodic layer and its defects
We revisit the differential sampling method introduced in (Haddar and Nguyen 2017 Comput. Math. Appl. 74 2831–55) for the identification of a periodic domain and some local perturbation. We provide a theoretical justification of the method that avoids assuming that the local perturbation is also per...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2023-05, Vol.39 (5), p.55001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revisit the differential sampling method introduced in (Haddar and Nguyen 2017
Comput. Math. Appl.
74
2831–55) for the identification of a periodic domain and some local perturbation. We provide a theoretical justification of the method that avoids assuming that the local perturbation is also periodic. Our theoretical framework uses functional spaces with continuous dependence with respect to the Floquet–Bloch variable. The corner stone of the analysis is the justification of the generalized linear sampling method in this setting for a single Floquet–Bloch mode. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/1361-6420/acc19a |