Range-relaxed strategy applied to the Levenberg–Marquardt method with uniformly convex penalization term in Banach spaces

In this paper we propose the employment of the so-called range-relaxed criteria Boiger et al (2020 IMA J. Numer. Anal. 40 606–627) for choosing the regularization parameters (or equivalently, the Lagrange multipliers) of the Levenberg–Marquardt method for solving nonlinear ill-posed problems in Bana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2022-09, Vol.38 (9), p.95001
Hauptverfasser: Margotti, Fábio, Hafemann, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose the employment of the so-called range-relaxed criteria Boiger et al (2020 IMA J. Numer. Anal. 40 606–627) for choosing the regularization parameters (or equivalently, the Lagrange multipliers) of the Levenberg–Marquardt method for solving nonlinear ill-posed problems in Banach spaces. The proposed algorithm employs the Bregman distance induced by a uniformly convex functional and allows the use of a penalization generated from the total variation semi-norm. We present a geometrical interpretation of the method and deliver a complete convergence analysis, including stability and regularization properties. Further, we show that our new method is competitive by testing it with real data in the complete electrode model of 2D electrical impedance tomography.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ac7e68