On diffusive scaling in acousto-optic imaging

Acousto-optic imaging (AOI) is a hybrid imaging process. By perturbing the to-be-reconstructed tissues with acoustic waves, one introduces the interaction between the acoustic and optical waves, leading to a more stable reconstruction of the optical properties. The mathematical model was described i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2020-08, Vol.36 (8), p.85011
Hauptverfasser: Chung, Francis J, Lai, Ru-Yu, Li, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acousto-optic imaging (AOI) is a hybrid imaging process. By perturbing the to-be-reconstructed tissues with acoustic waves, one introduces the interaction between the acoustic and optical waves, leading to a more stable reconstruction of the optical properties. The mathematical model was described in [27], with the radiative transfer equation serving as the forward model for the optical transport. In this paper we investigate the stability of the reconstruction. In particular, we are interested in how the stability depends on the Knudsen number, Kn, a quantity that measures the intensity of the scattering effect of photon particles in a media. Our analysis shows that as Kn decreases to zero, photons scatter more frequently, and since information is lost, the reconstruction becomes harder. To counter this effect, devices need to be constructed so that laser beam is highly concentrated. We will give a quantitative error bound, and explicitly show that such concentration has an exponential dependence on Kn. Numerical evidence will be provided to verify the proof.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ab9f85