Convergence analysis of (statistical) inverse problems under conditional stability estimates

Conditional stability estimates require additional regularization for obtaining stable approximate solutions if the validity area of such estimates is not completely known. In this context, we consider ill-posed nonlinear inverse problems in Hilbert scales satisfying conditional stability estimates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2020-01, Vol.36 (1), p.15004
Hauptverfasser: Werner, Frank, Hofmann, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conditional stability estimates require additional regularization for obtaining stable approximate solutions if the validity area of such estimates is not completely known. In this context, we consider ill-posed nonlinear inverse problems in Hilbert scales satisfying conditional stability estimates characterized by general concave index functions. For that case, we exploit Tikhonov regularization and provide convergence and convergence rates of regularized solutions for both deterministic and stochastic noise. We further discuss a priori and a posteriori parameter choice rules and illustrate the validity of our assumptions in different model and real world situations.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ab4cd7