Convergence analysis of (statistical) inverse problems under conditional stability estimates
Conditional stability estimates require additional regularization for obtaining stable approximate solutions if the validity area of such estimates is not completely known. In this context, we consider ill-posed nonlinear inverse problems in Hilbert scales satisfying conditional stability estimates...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2020-01, Vol.36 (1), p.15004 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conditional stability estimates require additional regularization for obtaining stable approximate solutions if the validity area of such estimates is not completely known. In this context, we consider ill-posed nonlinear inverse problems in Hilbert scales satisfying conditional stability estimates characterized by general concave index functions. For that case, we exploit Tikhonov regularization and provide convergence and convergence rates of regularized solutions for both deterministic and stochastic noise. We further discuss a priori and a posteriori parameter choice rules and illustrate the validity of our assumptions in different model and real world situations. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/1361-6420/ab4cd7 |