Geometric numerical integration of the assignment flow

The assignment flow is a smooth dynamical system that evolves on an elementary statistical manifold and performs contextual data labeling on a graph. We derive and introduce the linear assignment flow that evolves nonlinearly on the manifold, but is governed by a linear ODE on the tangent space. Var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2020-03, Vol.36 (3), p.34003
Hauptverfasser: Zeilmann, Alexander, Savarino, Fabrizio, Petra, Stefania, Schnörr, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The assignment flow is a smooth dynamical system that evolves on an elementary statistical manifold and performs contextual data labeling on a graph. We derive and introduce the linear assignment flow that evolves nonlinearly on the manifold, but is governed by a linear ODE on the tangent space. Various numerical schemes adapted to the mathematical structure of these two models are designed and studied, for the geometric numerical integration of both flows: embedded Runge-Kutta-Munthe-Kaas schemes for the nonlinear flow, adaptive Runge-Kutta schemes and exponential integrators for the linear flow. All algorithms are parameter free, except for setting a tolerance value that specifies adaptive step size selection by monitoring the local integration error, or fixing the dimension of the Krylov subspace approximation. These algorithms provide a basis for applying the assignment flow to machine learning scenarios beyond supervised labeling, including unsupervised labeling and learning from controlled assignment flows.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ab2772