Relativistic mechanics and thermodynamics: II. A linear translation Hamiltonian–Lagrangian formalism

A relativistic Hamiltonian–Lagrangian formalism for a composite system submitted to conservative and non-conservative forces is developed. A block descending an incline with a frictional force, mechanical energy dissipation process, is described, obtaining an Euler–Lagrange equation including a Rayl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of physics 2021-05, Vol.42 (3), p.35801
1. Verfasser: Güémez, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A relativistic Hamiltonian–Lagrangian formalism for a composite system submitted to conservative and non-conservative forces is developed. A block descending an incline with a frictional force, mechanical energy dissipation process, is described, obtaining an Euler–Lagrange equation including a Rayleigh’s dissipation function. A cannonball rising on an incline, process evolving with mechanical energy production, is described by an Euler–Lagrange equation including a Gibbs’ production function, with a chemical origin force. A matrix four-vector mechanical equation, considering processes’ mechanical and phenomenological aspects, is postulated. This relativistic Hamiltonian–Lagrangian four-vector formalism complements the Einstein–Minkowski–Lorentz four-vector fundamental equation formalism. By considering a process’ mechanical and thermodynamic description, temporal evolution equations, relating process’ Hamiltonian (mechanical energy) evolution and the involved thermodynamic potentials (entropy of the universe, Helmholtz free energy, Gibbs free enthalpy) variations, are obtained.
ISSN:0143-0807
1361-6404
DOI:10.1088/1361-6404/abdb9d