Quantum gravity on polygons and R×Zn FLRW model

We fully solve the quantum geometry of Z n as a polygon graph with arbitrary metric square-lengths on the edges, finding a ∗-preserving quantum Levi-Civita connection which is unique for n ≠ 4. As a first application, we numerically compute correlation functions for Euclideanised quantum gravity on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2020-12, Vol.37 (24), p.245001
Hauptverfasser: Argota-Quiroz, J N, Majid, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We fully solve the quantum geometry of Z n as a polygon graph with arbitrary metric square-lengths on the edges, finding a ∗-preserving quantum Levi-Civita connection which is unique for n ≠ 4. As a first application, we numerically compute correlation functions for Euclideanised quantum gravity on Z n for small n . We then study an FLRW model on R × Z n , finding the same expansion rate as for the classical flat FLRW model in 1 + 2 dimensions. We also look at particle creation on R × Z n and find an additional m = 0 adiabatic no particle creation expansion as well as the particle creation spectrum for a smoothed step expansion.
ISSN:0264-9381
1361-6382
DOI:10.1088/1361-6382/abbaa8