On the quantum structure of space-time, gravity, and higher spin in matrix models
In this introductory review, we argue that a quantum structure of space-time naturally entails a higher-spin theory, to avoid significant Lorentz violation. A suitable framework is provided by Yang-Mills matrix models, which allow to consider space-time as a physical system, which is treated on the...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2020-06, Vol.37 (11), p.113001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this introductory review, we argue that a quantum structure of space-time naturally entails a higher-spin theory, to avoid significant Lorentz violation. A suitable framework is provided by Yang-Mills matrix models, which allow to consider space-time as a physical system, which is treated on the same footing as the fields that live on it. We discuss a specific quantum space-time solution, whose internal structure leads to a consistent and ghost-free higher-spin gauge theory. The spin 2 modes give rise to metric perturbations, which include the standard gravitons as well as the linearized Schwarzschild solution. |
---|---|
ISSN: | 0264-9381 1361-6382 |
DOI: | 10.1088/1361-6382/ab857f |