Isotropic quasi-Einstein manifolds

We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2019-12, Vol.36 (24), p.245005
Hauptverfasser: Brozos-Vázquez, M, García-Río, E, Valle-Regueiro, X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 245005
container_title Classical and quantum gravity
container_volume 36
creator Brozos-Vázquez, M
García-Río, E
Valle-Regueiro, X
description We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor.
doi_str_mv 10.1088/1361-6382/ab4f1b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6382_ab4f1b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgab4f1b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-2f43408508681c8a28cb9c7713ae2f0c469910f7e3b49e549592c4f6c89d020c3</originalsourceid><addsrcrecordid>eNp1j0FLAzEUhIMoWKt3j8WTB2PfS7LZ5CilaqHgRc8hm00kpd3dJtuD_95dVjwpDDwYZob3EXKL8Iig1BK5RCq5YktbiYDVGZn9WudkBkwKqrnCS3KV8w4AUSGbkbtNbvvUdtEtjiebI13HJvc-NouDbWJo93W-JhfB7rO_-blz8vG8fl-90u3by2b1tKWOI-8pC4ILUAUoqdApy5SrtCtL5NazAE5IrRFC6XkltC-ELjRzIkindA0MHJ8TmHZdanNOPpguxYNNXwbBjIxmBDIjkJkYh8r9VIltZ3btKTXDg8YdPw2XholBBUBhujoM0Yc_ov8ufwOVUl7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isotropic quasi-Einstein manifolds</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Brozos-Vázquez, M ; García-Río, E ; Valle-Regueiro, X</creator><creatorcontrib>Brozos-Vázquez, M ; García-Río, E ; Valle-Regueiro, X</creatorcontrib><description>We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/ab4f1b</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>harmonic Weyl tensor ; quasi-Einstein equation ; warped product ; wave</subject><ispartof>Classical and quantum gravity, 2019-12, Vol.36 (24), p.245005</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-2f43408508681c8a28cb9c7713ae2f0c469910f7e3b49e549592c4f6c89d020c3</citedby><cites>FETCH-LOGICAL-c313t-2f43408508681c8a28cb9c7713ae2f0c469910f7e3b49e549592c4f6c89d020c3</cites><orcidid>0000-0003-4945-9587 ; 0000-0003-1195-1664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6382/ab4f1b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Brozos-Vázquez, M</creatorcontrib><creatorcontrib>García-Río, E</creatorcontrib><creatorcontrib>Valle-Regueiro, X</creatorcontrib><title>Isotropic quasi-Einstein manifolds</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor.</description><subject>harmonic Weyl tensor</subject><subject>quasi-Einstein equation</subject><subject>warped product</subject><subject>wave</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEUhIMoWKt3j8WTB2PfS7LZ5CilaqHgRc8hm00kpd3dJtuD_95dVjwpDDwYZob3EXKL8Iig1BK5RCq5YktbiYDVGZn9WudkBkwKqrnCS3KV8w4AUSGbkbtNbvvUdtEtjiebI13HJvc-NouDbWJo93W-JhfB7rO_-blz8vG8fl-90u3by2b1tKWOI-8pC4ILUAUoqdApy5SrtCtL5NazAE5IrRFC6XkltC-ELjRzIkindA0MHJ8TmHZdanNOPpguxYNNXwbBjIxmBDIjkJkYh8r9VIltZ3btKTXDg8YdPw2XholBBUBhujoM0Yc_ov8ufwOVUl7A</recordid><startdate>20191219</startdate><enddate>20191219</enddate><creator>Brozos-Vázquez, M</creator><creator>García-Río, E</creator><creator>Valle-Regueiro, X</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4945-9587</orcidid><orcidid>https://orcid.org/0000-0003-1195-1664</orcidid></search><sort><creationdate>20191219</creationdate><title>Isotropic quasi-Einstein manifolds</title><author>Brozos-Vázquez, M ; García-Río, E ; Valle-Regueiro, X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-2f43408508681c8a28cb9c7713ae2f0c469910f7e3b49e549592c4f6c89d020c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>harmonic Weyl tensor</topic><topic>quasi-Einstein equation</topic><topic>warped product</topic><topic>wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brozos-Vázquez, M</creatorcontrib><creatorcontrib>García-Río, E</creatorcontrib><creatorcontrib>Valle-Regueiro, X</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brozos-Vázquez, M</au><au>García-Río, E</au><au>Valle-Regueiro, X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotropic quasi-Einstein manifolds</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2019-12-19</date><risdate>2019</risdate><volume>36</volume><issue>24</issue><spage>245005</spage><pages>245005-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/ab4f1b</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4945-9587</orcidid><orcidid>https://orcid.org/0000-0003-1195-1664</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2019-12, Vol.36 (24), p.245005
issn 0264-9381
1361-6382
language eng
recordid cdi_crossref_primary_10_1088_1361_6382_ab4f1b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects harmonic Weyl tensor
quasi-Einstein equation
warped product
wave
title Isotropic quasi-Einstein manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotropic%20quasi-Einstein%20manifolds&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Brozos-V%C3%A1zquez,%20M&rft.date=2019-12-19&rft.volume=36&rft.issue=24&rft.spage=245005&rft.pages=245005-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/ab4f1b&rft_dat=%3Ciop_cross%3Ecqgab4f1b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true