Isotropic quasi-Einstein manifolds
We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2019-12, Vol.36 (24), p.245005 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 245005 |
container_title | Classical and quantum gravity |
container_volume | 36 |
creator | Brozos-Vázquez, M García-Río, E Valle-Regueiro, X |
description | We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor. |
doi_str_mv | 10.1088/1361-6382/ab4f1b |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6382_ab4f1b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgab4f1b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-2f43408508681c8a28cb9c7713ae2f0c469910f7e3b49e549592c4f6c89d020c3</originalsourceid><addsrcrecordid>eNp1j0FLAzEUhIMoWKt3j8WTB2PfS7LZ5CilaqHgRc8hm00kpd3dJtuD_95dVjwpDDwYZob3EXKL8Iig1BK5RCq5YktbiYDVGZn9WudkBkwKqrnCS3KV8w4AUSGbkbtNbvvUdtEtjiebI13HJvc-NouDbWJo93W-JhfB7rO_-blz8vG8fl-90u3by2b1tKWOI-8pC4ILUAUoqdApy5SrtCtL5NazAE5IrRFC6XkltC-ELjRzIkindA0MHJ8TmHZdanNOPpguxYNNXwbBjIxmBDIjkJkYh8r9VIltZ3btKTXDg8YdPw2XholBBUBhujoM0Yc_ov8ufwOVUl7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isotropic quasi-Einstein manifolds</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Brozos-Vázquez, M ; García-Río, E ; Valle-Regueiro, X</creator><creatorcontrib>Brozos-Vázquez, M ; García-Río, E ; Valle-Regueiro, X</creatorcontrib><description>We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/ab4f1b</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>harmonic Weyl tensor ; quasi-Einstein equation ; warped product ; wave</subject><ispartof>Classical and quantum gravity, 2019-12, Vol.36 (24), p.245005</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-2f43408508681c8a28cb9c7713ae2f0c469910f7e3b49e549592c4f6c89d020c3</citedby><cites>FETCH-LOGICAL-c313t-2f43408508681c8a28cb9c7713ae2f0c469910f7e3b49e549592c4f6c89d020c3</cites><orcidid>0000-0003-4945-9587 ; 0000-0003-1195-1664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6382/ab4f1b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Brozos-Vázquez, M</creatorcontrib><creatorcontrib>García-Río, E</creatorcontrib><creatorcontrib>Valle-Regueiro, X</creatorcontrib><title>Isotropic quasi-Einstein manifolds</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor.</description><subject>harmonic Weyl tensor</subject><subject>quasi-Einstein equation</subject><subject>warped product</subject><subject>wave</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEUhIMoWKt3j8WTB2PfS7LZ5CilaqHgRc8hm00kpd3dJtuD_95dVjwpDDwYZob3EXKL8Iig1BK5RCq5YktbiYDVGZn9WudkBkwKqrnCS3KV8w4AUSGbkbtNbvvUdtEtjiebI13HJvc-NouDbWJo93W-JhfB7rO_-blz8vG8fl-90u3by2b1tKWOI-8pC4ILUAUoqdApy5SrtCtL5NazAE5IrRFC6XkltC-ELjRzIkindA0MHJ8TmHZdanNOPpguxYNNXwbBjIxmBDIjkJkYh8r9VIltZ3btKTXDg8YdPw2XholBBUBhujoM0Yc_ov8ufwOVUl7A</recordid><startdate>20191219</startdate><enddate>20191219</enddate><creator>Brozos-Vázquez, M</creator><creator>García-Río, E</creator><creator>Valle-Regueiro, X</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4945-9587</orcidid><orcidid>https://orcid.org/0000-0003-1195-1664</orcidid></search><sort><creationdate>20191219</creationdate><title>Isotropic quasi-Einstein manifolds</title><author>Brozos-Vázquez, M ; García-Río, E ; Valle-Regueiro, X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-2f43408508681c8a28cb9c7713ae2f0c469910f7e3b49e549592c4f6c89d020c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>harmonic Weyl tensor</topic><topic>quasi-Einstein equation</topic><topic>warped product</topic><topic>wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brozos-Vázquez, M</creatorcontrib><creatorcontrib>García-Río, E</creatorcontrib><creatorcontrib>Valle-Regueiro, X</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brozos-Vázquez, M</au><au>García-Río, E</au><au>Valle-Regueiro, X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotropic quasi-Einstein manifolds</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2019-12-19</date><risdate>2019</risdate><volume>36</volume><issue>24</issue><spage>245005</spage><pages>245005-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/ab4f1b</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4945-9587</orcidid><orcidid>https://orcid.org/0000-0003-1195-1664</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2019-12, Vol.36 (24), p.245005 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6382_ab4f1b |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | harmonic Weyl tensor quasi-Einstein equation warped product wave |
title | Isotropic quasi-Einstein manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotropic%20quasi-Einstein%20manifolds&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Brozos-V%C3%A1zquez,%20M&rft.date=2019-12-19&rft.volume=36&rft.issue=24&rft.spage=245005&rft.pages=245005-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/ab4f1b&rft_dat=%3Ciop_cross%3Ecqgab4f1b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |