Isotropic quasi-Einstein manifolds

We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2019-12, Vol.36 (24), p.245005
Hauptverfasser: Brozos-Vázquez, M, García-Río, E, Valle-Regueiro, X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor.
ISSN:0264-9381
1361-6382
DOI:10.1088/1361-6382/ab4f1b