Isotropic quasi-Einstein manifolds
We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2019-12, Vol.36 (24), p.245005 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the local structure of four-dimensional Lorentzian quasi-Einstein manifolds under conditions on the Weyl tensor. We show that if the Weyl tensor is harmonic and the potential function preserves this harmonicity then, in the isotropic case, the manifold is necessarily a pp-wave. Using the quasi-Einstein equation, further conclusions are obtained for pp-waves. In particular, we show that a four-dimensional pp-wave is conformally Einstein if and only if it is locally conformally flat or has harmonic Weyl tensor. |
---|---|
ISSN: | 0264-9381 1361-6382 |
DOI: | 10.1088/1361-6382/ab4f1b |