The Self-Regulated Growth of Supermassive Black Holes

We present a series of simulations of the self-regulated growth of supermassive black holes (SMBHs) in galaxies via three different fueling mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in all three scenarios follow the same black hole fundamental plane (BHFP) and corre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2008-10, Vol.686 (2), p.815-828
Hauptverfasser: Younger, Joshua D, Hopkins, Philip F, Cox, T. J, Hernquist, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a series of simulations of the self-regulated growth of supermassive black holes (SMBHs) in galaxies via three different fueling mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in all three scenarios follow the same black hole fundamental plane (BHFP) and correlation with bulge binding energy seen in simulations of major mergers, and observed locally. Furthermore, provided that the total gas supply is significantly larger than the mass of the SMBH, its limiting mass is not influenced by the amount of gas available or the efficiency of black hole growth. This supports the assertion that SMBHs accrete until they reach a critical mass at which feedback is sufficient to unbind the gas locally, terminating the inflow and stalling further growth. At the same time, while minor and major mergers follow the same projected correlations (e.g., the M sub(BH)- capital sigma and Magorrian relations), SMBHs grown via disk instabilities do not, owing to structural differences between the host bulges. This finding is supported by recent observations of SMBHs in pseudobulges and bulges in barred systems, as compared to those hosted by classical bulges. Taken together, this provides support for the BHFP and binding energy correlations as being more 'fundamental' than other proposed correlations in that they reflect the physical mechanism driving the coevolution of SMBHs and spheroids.
ISSN:0004-637X
1538-4357
DOI:10.1086/591639