Initial Results from the USNO Dispersed Fourier Transform Spectrograph
We have designed and constructed a "dispersed Fourier transform spectrometer" (dFTS), consisting of a conventional FTS followed by a grating spectrometer. By combining these two devices, we negate a substantial fraction of the sensitivity disadvantage of a conventional FTS for high-resolut...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2007-05, Vol.661 (1), p.616-633 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have designed and constructed a "dispersed Fourier transform spectrometer" (dFTS), consisting of a conventional FTS followed by a grating spectrometer. By combining these two devices, we negate a substantial fraction of the sensitivity disadvantage of a conventional FTS for high-resolution, broadband, optical spectroscopy, while preserving many of the advantages inherent to interferometric spectrometers. In addition, we have implemented a simple and inexpensive laser metrology system, which enables very precise calibration of the interferometer wavelength scale. The fusion of interferometric and dispersive technologies with a laser metrology system yields an instrument well suited to stellar spectroscopy, velocimetry, and extrasolar planet detection, which is competitive with existing high-resolution, high-accuracy stellar spectrometers. In this paper we describe the design of our prototype dFTS, explain the algorithm we use to efficiently reconstruct a broadband spectrum from a sequence of narrowband interferograms, and present initial observations and resulting velocimetry of stellar targets. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1086/513181 |