Main-sequence evolution with efficient central energy transport
Simultaneous solution of the solar neutrino and pulsation problems strongly suggests that in the center of the Sun, energy is transported by a more efficient means than is provided by current, conventional physics. Here, in a first, isothermal approximation, the main-sequence consequences are explor...
Gespeichert in:
Veröffentlicht in: | Astrophys. J.; (United States) 1988-06, Vol.329 (1), p.47-50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simultaneous solution of the solar neutrino and pulsation problems strongly suggests that in the center of the Sun, energy is transported by a more efficient means than is provided by current, conventional physics. Here, in a first, isothermal approximation, the main-sequence consequences are explored of supposing that the Sun and other 1 solar mass stars contain a relatively efficient means of central energy transport. It is found that, for given initial compositions, the ages of models reaching a given turn-off surface temperature may easily be reduced from the conventionally deduced values by 15-20 percent. The models leave the vicinity of the zero-age main sequence with central hydrogen much less exhausted than usual. This indicates that the possession of a near-isothermal core and the attempted violation of the Schoenberg-Chandrasekhar theorem dominate over mere hydrogen exhaustion in determining the time for departure from the main sequence. Areas of astrophysics that may be affected by these results are indicated. 29 references. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1086/185174 |