On the dust jet model of SS 433

The dust jet model for production of narrow gamma-ray lines from SS 433 is examined and shown to be implausible. Sputtering rates at disk temperatures are high, and self-absorption rates in the disk and jet are important; both imply that dust particles would easily be destroyed. The energy deposited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 1986-05, Vol.304 (2), p.581-584
Hauptverfasser: Helfer, H. L., Savedoff, M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dust jet model for production of narrow gamma-ray lines from SS 433 is examined and shown to be implausible. Sputtering rates at disk temperatures are high, and self-absorption rates in the disk and jet are important; both imply that dust particles would easily be destroyed. The energy deposited in the dust jet particles by collisions with the ambient protons should be radiated in the optical and infrared in amounts greatly exceeding that observed. The dust momentum pumps ambient gas out of the beam at rates which imply that for the steady state, the ambient gas has to have an initial temperature exceeding one million K. The ambient medium is also required to have densities exceeding those postulated for the H-alpha-emitting gas jet, and the interaction within the gas jet material would result in appreciable broadening of the H-alpha emission lines. At present, there is no viable model for the steady state production of the gamma-ray line radiation.
ISSN:0004-637X
1538-4357
DOI:10.1086/164193