THE SELECTIVE ABSORPTION OF POTASSIUM BY ANIMAL CELLS

1. Frog muscles perfused with Ringer solution in which potassium chloride has been replaced by an equivalent amount of rubidium or cesium chloride take up rubidium or cesium and incorporate them into the tissue substance in such form as to be retained during a subsequent perfusion with potassium-fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 1921-11, Vol.4 (2), p.141-148
Hauptverfasser: Mitchell, Philip H., Wilson, J. Walter, Stanton, Ralph E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Frog muscles perfused with Ringer solution in which potassium chloride has been replaced by an equivalent amount of rubidium or cesium chloride take up rubidium or cesium and incorporate them into the tissue substance in such form as to be retained during a subsequent perfusion with potassium-free Ringer solution, provided the muscles contract during the first perfusion. Retention of rubidium or cesium by a resting muscle does not occur. 2. Rats on synthetic diets, adequate in all respects except that potassium was replaced by an equivalent amount of rubidium or cesium, died after a period varying from 10 to 17 days with characteristic symptoms including tetanic spasms. Muscle, heart, liver, kidney, spleen, and lung tissues were then found to contain significant amounts of rubidium or cesium. The concentration of these metals in the muscle amounted, in some cases, as shown by a spectroscopic estimation, to about half the concentration of potassium normally found in mammallian muscle. 3. The results are regarded as tending to confirm the theory that the peculiarities in the physiological effects of potassium, including the facility with which it is "selected" by living cells in preference to sodium, are related to the electronic structure of the potassium ion as compared with that of similar ions. The possible relationship of the comparative migration velocity, a function of the electronic structure, to physiological effects is suggested.
ISSN:0022-1295
1540-7748
DOI:10.1085/jgp.4.2.141