Sorption of Phenol and Alkylphenols from Aqueous Solution onto Organically Modified Montmorillonite and Applications of Dual-Mode Sorption Model

Single- and multisolute competitive sorptions were carried out in a batch reactor to investigate the uptake of phenol, 4-methylphenol (MeP), 2,4-dimethylphenol (DMeP), and 4-ethylphenol (EtP) dissolved in water at 25°C onto organically modified montmorillonite. Hexadecyltrimethylammonium (HDTMA) cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation science and technology 2000-01, Vol.35 (2), p.243-259
Hauptverfasser: HUH, JOONG -KI, SONG, DONG -IK, JEON, YOUNG -WOONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single- and multisolute competitive sorptions were carried out in a batch reactor to investigate the uptake of phenol, 4-methylphenol (MeP), 2,4-dimethylphenol (DMeP), and 4-ethylphenol (EtP) dissolved in water at 25°C onto organically modified montmorillonite. Hexadecyltrimethylammonium (HDTMA) cation was exchanged for metal cations on the montmorillonite to the extent of the cation-exchange capacity (CEC) of the montmorillonite to prepare HDTMA-montmorillonite, changing its surface property from hydrophilic to organophilic. It was observed from the experimental results that the adsorption affinity on HDTMA-montmorillonite was in the order 4-EtP ≈ 2,4-DMeP 4-MeP phenol. The Langmuir, dual-mode sorption (DS), and Redlich-Peterson (RP) models were used to analyze the single-solute sorption equilibria. The competitive Langmuir model (CLM), competitive dual-mode sorption model (CDSM), and ideal adsorbed solution theory (IAST), coupled with the single-solute models (i.e., Langmuir, DS, and RP models), were used to predict the multisolute competitive sorption equilibria. All the models considered in this work yielded favorable representations of both single- and multisolute sorption behaviors. DSM, CDSM, and IAST coupled with the DSM were found to be other satisfactory models to describe the single- and multisolute sorption of the phenolic compounds onto HDTMA-montmorillonite.
ISSN:0149-6395
1520-5754
DOI:10.1081/SS-100100154