Droplet Spreading Under Weak Slippage-Existence for the Cauchy Problem
In this paper, we consider the thin film equation u t + div(|u| n ∇Δu) = 0 in the multi-dimensional setting and solve the Cauchy problem in the parameter regime n ∈ [2, 3). New interpolation inequalities applied to the energy estimate enable us to control third order derivatives of appropriate powe...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2005-01, Vol.29 (11-12), p.1697-1744 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the thin film equation u
t
+ div(|u|
n
∇Δu) = 0 in the multi-dimensional setting and solve the Cauchy problem in the parameter regime n ∈ [2, 3). New interpolation inequalities applied to the energy estimate enable us to control third order derivatives of appropriate powers of solutions. In such a way, a natural solution concept - reminiscent of that one used by Bernis and Friedman [Bernis, F., Friedman, A., (
1990
). Higher order nonlinear degenerate parabolic equations. J. Differential Equations 83:179-206] in space dimension N = 1 − becomes available for the first time in the multi-dimensional setting. In addition, we provide the key integral estimate to establish results on the qualitative behavior of solutions like finite speed of propagation or occurrence of a waiting time phenomenon. |
---|---|
ISSN: | 0360-5302 1532-4133 |
DOI: | 10.1081/PDE-200040193 |