On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems

In this article, we give some mathematical results for an isothermal model of capillary compressible fluids derived by Dunn and Serrin in [1] Dunn JE, Serrin J. On the thermodynamics of interstitial working. Arch Rational Mech Anal. 1985; 88(2):95-133), which can be used as a phase transition model....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2003-01, Vol.28 (3-4), p.843-868
Hauptverfasser: Bresch, Didier, Desjardins, Benoît, Lin, Chi-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we give some mathematical results for an isothermal model of capillary compressible fluids derived by Dunn and Serrin in [1] Dunn JE, Serrin J. On the thermodynamics of interstitial working. Arch Rational Mech Anal. 1985; 88(2):95-133), which can be used as a phase transition model. We consider a periodic domain Ω = T  d (d = 2 ou 3) or a strip domain Ω = (0,1) × T  d −1 . We look at the dependence of the viscosity μ and the capillarity coefficient κwith respect to the density ρ. Depending on the cases we consider, different results are obtained. We prove for instance for a viscosity μ(ρ) = νρ and a surface tension the global existence of weak solutions of the Korteweg system without smallness assumption on the data. This model includes a shallow water model and a lubrication model. We discuss the validity of the result for the shallow water equations since the density is less regular than in the Korteweg case.
ISSN:0360-5302
1532-4133
DOI:10.1081/PDE-120020499