Potential use of leachate from composted fruit and vegetable waste as fertilizer for corn

Composting fruit and vegetable waste from grocery stores on farms is a challenge due to the large quantity of liquid that leaches out. This leachate needs to be characterized for its effects on plant growth and soil. It was acidic with high conductivity; the plant mineral nutrient contents derived f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cogent food & agriculture 2019, Vol.5 (1), p.1580180
Hauptverfasser: Sall, Papa Malick, Antoun, Hani, Chalifour, François-P., Beauchamp, Chantal J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Composting fruit and vegetable waste from grocery stores on farms is a challenge due to the large quantity of liquid that leaches out. This leachate needs to be characterized for its effects on plant growth and soil. It was acidic with high conductivity; the plant mineral nutrient contents derived from the leachate (in decreasing order) were K, N mainly as ammonium-N, Ca, Mg, Na, and P; the trace elements were quite low. The germination and rootlet growth of cress and corn increased with the dilution of the compost leachate. In greenhouse assays, the compost leachate exhibited phytotoxicity to corn when used at high application rates. The corn leaf area, shoot and root biomass, plant concentrations and uptake of N, P and K were similar among the 20 mM N-fertilized control and the 30-40 m 3 /ha leachate treatments. In a field study on sandy loam, corn yields and plant uptake of P and K were similar among the mineral fertilized control and split-application leachate treatments applied to meet the P or K requirements of corn. After harvest, the soil pH, conductivity, and total N, P, and K contents were not affected by the leachate treatments. These results demonstrate the opportunity of recycling plant nutrients from compost leachate of fruit and vegetable waste as fertilizer to meet crop nutrient requirements without phytotoxicity and trace elements threats.
ISSN:2331-1932
2331-1932
DOI:10.1080/23311932.2019.1580180