Segmentation and weight prediction of grape ear based on SFNet-ResNet18

In this paper, the segment and weight prediction problems are investigated for ear of grape based on deep learning technologies. The image datum is collected from ZaoHeiBao grape in a greenhouse by camera. The grape ear target segmentation model is constructed by cross combining three backbone netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems science & control engineering 2022-12, Vol.10 (1), p.722-732
Hauptverfasser: Liang, Chang-Mei, Li, Yan-Wen, Liu, Yan-Hong, Wen, Peng-Fei, Yang, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the segment and weight prediction problems are investigated for ear of grape based on deep learning technologies. The image datum is collected from ZaoHeiBao grape in a greenhouse by camera. The grape ear target segmentation model is constructed by cross combining three backbone networks (ResNet18, ResNet50, and ResNet101) and four deep learning semantic segmentation networks (SFNet, GCNet, EMANet, and Deeplabv3). The experimental results show that for the SFNet-ResNet18 model, whose structural size is 52.68MB, the mean Intersection over Union (mIoU) is , the mean Pixel Accuracy (mPA) is , and the average segmentation speed of the image ( ) is 0.217s. Therefore, the performance of the SFNet-ResNet18 model outperforms other combined network models and is selected to segment grape ears. Furthermore, on the basis of the segmentation results of grape ears by using the SFNet-ResNet18 model, the grape ear weight is predicted by adopting fractional regression model. The value of is 0.8903, which means that the selected model could accurately predict the weight of grape ears. The proposed method can not only segment the grape ears and accurately predict the weight of the grape ears, but also provide theoretical and technical support for grape yield prediction.
ISSN:2164-2583
2164-2583
DOI:10.1080/21642583.2022.2110541